神经网络的基本原理是什么?

2024-05-21 07:25

1. 神经网络的基本原理是什么?

神经网络的基本原理是:每个神经元把最初的输入值乘以一定的权重,并加上其他输入到这个神经元里的值(并结合其他信息值),最后算出一个总和,再经过神经元的偏差调整,最后用激励函数把输出值标准化。基本上,神经网络是由一层一层的不同的计算单位连接起来的。我们把计算单位称为神经元,这些网络可以把数据处理分类,就是我们要的输出。

神经网络常见的工具:
以上内容参考:在众多的神经网络工具中,NeuroSolutions始终处于业界领先位置。它是一个可用于windows XP/7高度图形化的神经网络开发工具。其将模块化,基于图标的网络设计界面,先进的学习程序和遗传优化进行了结合。该款可用于研究和解决现实世界的复杂问题的神经网络设计工具在使用上几乎无限制。
以上内容参考:百度百科-神经网络

神经网络的基本原理是什么?

2. 神经网络到底是什么

 神经网络可以指向两种,一个是生物神经网络,一个是人工神经网络。
  生物神经网络:一般指生物的大脑神经元,细胞,触点等组成的网络,用于产生生物的意识,帮助生物进行思考和行动。
  人工神经网络也简称为神经网络(NNs)或称作连接模型,它是一种模仿动物神经网络行为特征,进行分布式并行信息处理的算法数学模型。这种网络依靠系统的复杂程度,通过调整内部大量节点之间相互连接的关系,从而达到处理信息的目的。人工神经网络是一种应用类似于大脑神经突触联接的结构进行信息处理的数学模型。在工程与学术界也常直接简称为“神经网络”或类神经网络。
人工神经网络
  人工神经网络(Artificial Neural Network,即ANN ),是20世纪80 年代以来人工智能领域兴起的研究热点。它从信息处理角度对人脑神经元网络进行抽象, 建立某种简单模型,按不同的连接方式组成不同的网络。在工程与学术界也常直接简称为神经网络或类神经网络。

3. 神经网络的来源

       神经网络技术起源于上世纪五、六十年代,当时叫 感知机 (perceptron),包含有输入层、输出层和一个隐藏层。输入的特征向量通过隐藏层变换到达输出层,由输出层得到分类结果。但早期的单层感知机存在一个严重的问题——它对稍微复杂一些的函数都无能为力(如异或操作)。直到上世纪八十年代才被Hition、Rumelhart等人发明的多层感知机克服,就是具有多层隐藏层的感知机。
  
       多层感知机可以摆脱早期离散传输函数的束缚,使用sigmoid或tanh等连续函数模拟神经元对激励的响应,在训练算法上则使用Werbos发明的反向传播BP算法。这就是现在所说的神经网络NN。
  
        神经网络的层数直接决定了它对现实的刻画能力 ——利用每层更少的神经元拟合更加复杂的函数。但问题出现了——随着神经网络层数的加深, 优化函数越来越容易陷入局部最优解 ,并且这个“陷阱”越来越偏离真正的全局最优。利用有限数据训练的深层网络,性能还不如较浅层网络。同时,另一个不可忽略的问题是随着网络层数增加, “梯度消失”现象更加严重 。(具体来说,我们常常使用sigmoid作为神经元的输入输出函数。对于幅度为1的信号,在BP反向传播梯度时,每传递一层,梯度衰减为原来的0.25。层数一多,梯度指数衰减后低层基本上接受不到有效的训练信号。)
  
       2006年,Hition提出了深度学习的概念,引发了深度学习的热潮。具体是利用预训练的方式缓解了局部最优解的问题,将隐藏层增加到了7层,实现了真正意义上的“深度”。
  
  DNN形成 
  
         为了克服梯度消失,ReLU、maxout等传输函数代替了sigmoid,形成了如今DNN的基本形式。结构跟多层感知机一样,如下图所示:
                                          
        我们看到 全连接DNN的结构里下层神经元和所有上层神经元都能够形成连接,从而导致参数数量膨胀 。假设输入的是一幅像素为1K*1K的图像,隐含层有1M个节点,光这一层就有10^12个权重需要训练,这不仅容易过拟合,而且极容易陷入局部最优。
  
  CNN形成 
  
        由于图像中存在固有的局部模式(如人脸中的眼睛、鼻子、嘴巴等),所以将图像处理和神将网络结合引出卷积神经网络CNN。CNN是通过卷积核将上下层进行链接,同一个卷积核在所有图像中是共享的,图像通过卷积操作后仍然保留原先的位置关系。
                                          
 
  
                                          
         通过一个例子简单说明卷积神经网络的结构。假设我们需要识别一幅彩色图像,这幅图像具有四个通道ARGB(透明度和红绿蓝,对应了四幅相同大小的图像),假设卷积核大小为100*100,共使用100个卷积核w1到w100(从直觉来看,每个卷积核应该学习到不同的结构特征)。
  
        用w1在ARGB图像上进行卷积操作,可以得到隐含层的第一幅图像;这幅隐含层图像左上角第一个像素是四幅输入图像左上角100*100区域内像素的加权求和,以此类推。
  
 同理,算上其他卷积核,隐含层对应100幅“图像”。每幅图像对是对原始图像中不同特征的响应。按照这样的结构继续传递下去。CNN中还有max-pooling等操作进一步提高鲁棒性。
                                          
       注意到最后一层实际上是一个全连接层,在这个例子里,我们注意到输入层到隐藏层的参数瞬间降低到了100*100*100=10^6个!这使得我们能够用已有的训练数据得到良好的模型。题主所说的适用于图像识别,正是由于CNN模型限制参数了个数并挖掘了局部结构的这个特点。顺着同样的思路,利用语音语谱结构中的局部信息,CNN照样能应用在语音识别中。
  
  RNN形成 
  
       DNN无法对时间序列上的变化进行建模。然而,样本出现的时间顺序对于自然语言处理、语音识别、手写体识别等应用非常重要。为了适应这种需求,就出现了大家所说的另一种神经网络结构——循环神经网络RNN。
  
       在普通的全连接网络或CNN中,每层神经元的信号只能向上一层传播,样本的处理在各个时刻独立,因此又被成为前向神经网络(Feed-forward Neural Networks)。而在RNN中,神经元的输出可以在下一个时间段直接作用到自身,即第i层神经元在m时刻的输入,除了(i-1)层神经元在该时刻的输出外,还包括其自身在(m-1)时刻的输出!表示成图就是这样的:
                                          
 为方便分析,按照时间段展开如下图所示:
                                          
 (t+1)时刻网络的最终结果O(t+1)是该时刻输入和所有历史共同作用的结果!这就达到了对时间序列建模的目的。RNN可以看成一个在时间上传递的神经网络,它的深度是时间的长度!正如我们上面所说,“梯度消失”现象又要出现了,只不过这次发生在时间轴上。
  
        所以RNN存在无法解决长时依赖的问题。为解决上述问题,提出了LSTM(长短时记忆单元),通过cell门开关实现时间上的记忆功能,并防止梯度消失,LSTM单元结构如下图所示:
  
        除了DNN、CNN、RNN、ResNet(深度残差)、LSTM之外,还有很多其他结构的神经网络。如因为在序列信号分析中,如果我能预知未来,对识别一定也是有所帮助的。因此就有了双向RNN、双向LSTM,同时利用历史和未来的信息。
  
        事实上,不论是哪种网络,他们在实际应用中常常都混合着使用,比如CNN和RNN在上层输出之前往往会接上全连接层,很难说某个网络到底属于哪个类别。不难想象随着深度学习热度的延续,更灵活的组合方式、更多的网络结构将被发展出来。
  
 参考链接:https://www.leiphone.com/news/201702/ZwcjmiJ45aW27ULB.html

神经网络的来源

4. 神经网络从何而来?

【嵌牛导读】神经网络从何而来?这里说的『从何而来』,并不仅仅是从技术上去介绍一个方法的创造或发展,而更想探讨方法背后所蕴含的思想基础与演变之路。
  
 【嵌牛鼻子】神经网络、深度学习
  
 【嵌牛提问】神经网络的由来?
  
 【嵌牛正文】深度学习与神经网络是近几年来计算机与人工智能领域最炙手可热的话题了。为了蹭这波热度,博主也打算分享一些自己的经验与思考。第一篇文章想探讨一个非常基础的问题:神经网络从何而来?这里说的『从何而来』,并不仅仅是从技术上去介绍一个方法的创造或发展,而更想探讨方法背后所蕴含的思想基础与演变之路。
  
  
 首先,需要为『神经网络』正一下名。在人工智能领域,我们通常所说的神经网络(Neural Networks)全称是人工神经网络(Artificial Neural Network),与之对应的是我们用肉长成的生物神经网络(Biology Neural Network)。众所周知,人工神经网络受生物神经网络的启发而产生,并在几十年间不断进步演化。可要论人类对人工智能的探索历史,却远远长于这几十年。为了深刻了解神经网络出现的背景,我们有必要从更早的历史开始说起。
  
 简单说,人工智能想做的事情就是去总结和提炼人类思考的过程,使之能够机械化、可重复。从各种神话、传说来看,我们的祖先在几千年前就对这件事儿充满了好奇与遐想。到两千多年前,一大批伟大的哲学家在希腊、中国和印度相继诞生,并将人类对这一问题的认识推向了新的高度。为避免本文成为枯燥的哲学史,这里不想举太多的例子。伟大的希腊哲学家亚里士多德在他的《前分析篇》中提出了著名的三段论(sollygism),类似于:
  
 所有希腊人是人
  
 所有人终有一死
  
 因此所有希腊人终有一死
  
 虽然这是我们现在已经无比熟悉的推理模式,但是要在2000年前从无到有系统总结出一系列这样的命题与推理模式,却着实不易。有了『三段论』这种的武器,人们对问题的认识与决策就能从感性真正走向理性,做到可以重复。此外,我们熟悉的欧式几何也是当时这种逻辑推理学派的代表。欧式几何以一系列的公理为基础,基于一套严密的逻辑推理体系,最终得到结论的证明,现在仍然是每个学生需要反复训练的思维体操。
  
 随着时间的演进,认知哲学与逻辑学也在不断的发展。在17世纪时,以笛卡尔、莱布尼茨为代表的哲学家进一步提出通过数学的方式对逻辑推演进行标准化,这也是对人脑推理与思考的再次抽象,为后续以后基于数字电路的人工智能打下了基础。之后,数理逻辑进一步发展,而到了20世纪中期,数理逻辑又一次取得了巨大的突破,哥德尔不完备理论、图灵机模型等的相继提出,科学家们既认识到了数理逻辑的局限性,也看到了将推理机械化的无限可能性,一种新的计算方式呼之欲出。
  
 在图灵机的思想指导下,第一台电子计算机很快被设计出来,为人工智能的真正实现提供了物质上的基础。其实回望人工智能历史上的历次重大飞跃,硬件技术的发展无不扮演者重要的作用。很多看似有效的算法都苦于没有足够强大的计算平台支持无疾而终,而计算能力的提升也可以促进科学家们们摆脱束缚,在算法的研究道路上天马行空。深度学习这些年的迅猛发展,很大程度就是得益于大规模集群和图形处理器等技术的成熟,使得用复杂模型快速处理大规模数据成为可能。
  
 1956年达特茅斯会议上,斯坦福大学科学家约翰·麦卡锡(John McCarthy)正式提出了『人工智能』这一概念, 标志着一个学科的正式诞生,也标志着人工智能的发展开始进入了快车道。如果说逻辑符号操作是对人类思维的本质的抽象,那么利用电子计算机技术来模拟人类的符号推理计算也是一个自然而然的想法。在艾伦·纽威尔(Alan Newell)和赫伯特·西蒙(Herbert A.Simon)等大师的推动下,以逻辑推演为核心符号主义(symbolicism)流派很快占据了人工智能领域的重要地位。符号主义在很多领域取得了成功,比如在80年代风靡一时的专家系统,通过知识库和基于知识库的推理系统模拟专家进行决策,得到了广泛的应用。而本世纪初热炒的语义网络以及当下最流行的知识图谱,也可以看做这一流派的延续与发展。
  
 符号主义最大的特点是知识的表示直观,推理的过程清晰,但是也存在着许多局限性。除去在计算能力方面的困扰,一个很大的问题就在于虽然我们可以通过逻辑推理解决一些复杂的问题,但是对一些看似简单的问题,比如人脸识别,却无能为力。当看到一张人脸的照片,我们可以毫不费力的识别出这个人是谁,可这个过程并不需要做什么复杂的推理,它在我们的大脑中瞬间完成,以至于我们对这个过程的细节却一无所知。看起来想通过挖掘一系列严密的推理规则解决这类问题是相对困难的,这也促使很多人去探索与人脑工作更加贴合的解决方案。实际上在符号主义出现的同时,人工智能的另一重要学派联结主义(Connectionism)也开始蓬勃发展,本文的『主角』神经网络终于可以登场了。
  
 在文章的一开始就提到,我们现在所说的人工神经网络是受生物神经网络启发而设计出来的。在1890年,实验心理学先驱William James在他的巨著《心理学原理》中第一次详细论述人脑结构及功能。其中提到神经细胞受到刺激激活后可以把刺激传播到另一个神经细胞,并且神经细胞激活是细胞所有输入叠加的结果。这一后来得到验证的假说也成为了人工神经网络设计的生物学基础。基于这一假说,一系列模拟人脑神经计算的模型被相继提出,具有代表性的有Hebbian Learning Rule, Oja's Rule和MCP Neural Model等,他们与现在通用的神经网络模型已经非常相似,例如在Hebbian Learning模型中,已经可以支持神经元之间权重的自动学习。而在1958年,Rosenblatt将这些模型付诸于实施,利用电子设备构建了真正意义上的第一个神经网络模型:感知机(Perceptron)。Rosenblatt现场演示了其学习识别简单图像的过程,在当时的社会引起了轰动,并带来了神经网络的第一次大繁荣。此后的几十年里,神经网络又经历了数次起起伏伏,既有春风得意一统天下的岁月,也有被打入冷宫无人问津的日子,当然,这些都是后话了。
  
 本文更想讨论这样一个问题:神经网络产生的动机仅仅是对生物学中对神经机制的模仿吗?在神经网络产生的背后,还蕴含着一代代科学家怎么样的思想与情怀呢?事实上,在神经网络为代表的一类方法在人工智能中又被称为联结主义(Connectionism)。关于联结主义的历史,一般的文献介绍按照惯例会追溯到希腊时期哲学家们对关联性的定义与研究,例如我们的老朋友亚里士多德等等。然而当时哲学家研究的关联其实并不特指神经元之间的这种关联,比如前文提到的符号推理本身也是一种形式关联,在希腊哲学中并没有对这两者进行专门的区分。所以硬要把这些说成是连接主义的思想起源略微有一些牵强。
  
 前文提到,在数理逻辑发展过程中,17世纪的欧陆理性主义起到了重要的作用。以笛卡尔、莱布尼茨等为代表的哲学家,主张在理性中存在着天赋观念,以此为原则并严格按照逻辑必然性进行推理就可以得到普遍必然的知识。与此同时,以洛克、休谟等哲学家为代表的英国经验主义,则强调人类的知识来自于对感知和经验归纳。这一定程度上是对绝对的真理的一种否定,人类的认识是存在主观的,随经验而变化的部分的。如果在这个思想的指导下,我们与其去寻找一套普世且完备的推理系统,不如去构造一套虽不完美但能够随着经验积累不断完善的学习系统。而休谟甚至提出了放弃揭示自然界的因果联系和必然规律,而是依据“习惯性联想”去描绘一连串的感觉印象。这其实和神经网络设计的初衷是非常类似的:重视经验的获得与归纳(通过样本进行学习),但对模型本身的严谨性与可解释行则没有那么关注,正如有时候我们愿意把神经网络模型看做是一个『黑箱』。
  
 然而单单一个『黑箱』是不能成为经验的学习与整理的系统的,我们还需要去寻找构建『黑箱』的一种方法论。现代哲学发展到20世纪初期时,在维特根斯坦和罗素等哲学家的倡导下,产生了逻辑经验主义学派。依托当时逻辑学的迅猛发展,这一主义既强调经验的作用,也重视通过严密的逻辑推理来得到结论,而非简单的归纳。在数理逻辑领域颇有建树的罗素有一位大名鼎鼎的学生诺伯特·维纳,他创立的控制论与系统论、信息论一道,为信息科学的发展提供了坚实的理论基础。而神经网络模型的创立也深受这『三论』的影响。前文提到MCP神经元模型的两位创始人分别是罗素和维纳的学生。作为一个系统,神经网络接受外部的输入,得到输出,并根据环境进行反馈,对系统进行更新,直到达到稳定状态。这个过程,同样也是神经网络对环境信息传递的接受和重新编码的过程。如果如果把神经网络当做一个『黑盒』,那么我们首先关心该是这个黑盒的输入与输出,以及如何根据环境给黑盒一个合理的反馈,使之能够进行调整。而黑盒内部的结构,则更多的成为了形式的问题。我们借鉴生物神经网络构造这个黑盒,恰好是一个好的解决方案,但这未必是唯一的解决方案或者说与人类大脑的神经元结构存在必然的联系。比如在统计学习领域中最著名的支持向量机(Support Vector Machines),最终是作为一种特殊的神经网络而提出的。可当其羽翼丰满之后,则和神经网络逐渐脱离关系,开启了机器学习的另一个门派。不同的模型形式之间可以互相转化,但是重视经验(样本),强调反馈的思想却一直保留下来。
  
 前面说了这些,到底神经网络从何而来呢?总结下来就是三个方面吧:1.对理性逻辑的追求,对样本实证的重视,为神经网络的诞生提供了思想的基础。2.生物学与神经科学的发展为神经网络形式的出现提供了启发。3.计算机硬件的发展与计算能力的提升使神经网络从理想变成了现实。而这三方面的发展也催生着神经网络的进一步发展与深度学习的成熟:更大规模的数据,更完善的优化算法使网络能够学习到更多更准确的信息;对人脑的认识的提升启发设计出层次更深,结构更高效的网络结构;硬件存储与计算能力提升使海量数据的高效训练成为可能。而未来神经网络给我们带来的更多惊喜,也很大可能源自于这三个方面,让我们不妨多一些期待吧。

5. 神经网络的功能特点是由什么决定的

您好,您参考以下内容哦,神经网络的特点

1.自学习与自适应性

自适应性是指一个系统能够改变自身的性能以适应环境变化的能力。当环境发生变化时,相当于给神经网络输入新的训练样本,网络能够自动调整结构参数,改变映射关系,从而对特定的输入产生相应的期望输出。因此神经网络比使用固定推理方式的专家系统具有更强的适应性,更接近人脑的运行规律。

2.非线性

现实世界是一个非线性的复杂系统,人脑也是一个非线性的信号处理组织。人工神经元处于激活或抑制状态,表现为数学上的非线性关系。从整体上看,神经网络将知识存储于连接权值中,可以实现各种非线性映射。

3.鲁棒性和容错性

神经网络具有信息存储的分布性,故局部的损害会使人工神经网络的运行适度减弱,但不会产生灾难性的错误。

4.计算的并行性与存储的分布性

您好,由神经元特性,神经网络结构,学习和训练三大要素决定的,神经网络具有天然的并行性,这是由其结构特征决定的。每个神经元都可以根据接收到的信息进行独立运算和处理,并输出结果。同一层中的不同神经元可以同时进行运算,然后传输到下一层进行处理。因此,神经网络旺旺能够发挥并行计算的优势,大大提升运行速度。
希望可以帮助到您哦亲。【摘要】
神经网络的功能特点是由什么决定的【提问】
您好,我是百度问一问的合作老师,很高兴为您服务。【回答】
请您耐心等待几分钟,正在编辑整理回答,马上就为您解答,还请不要结束咨询哦。【回答】
好的【提问】
您好,您参考以下内容哦,神经网络的特点

1.自学习与自适应性

自适应性是指一个系统能够改变自身的性能以适应环境变化的能力。当环境发生变化时,相当于给神经网络输入新的训练样本,网络能够自动调整结构参数,改变映射关系,从而对特定的输入产生相应的期望输出。因此神经网络比使用固定推理方式的专家系统具有更强的适应性,更接近人脑的运行规律。

2.非线性

现实世界是一个非线性的复杂系统,人脑也是一个非线性的信号处理组织。人工神经元处于激活或抑制状态,表现为数学上的非线性关系。从整体上看,神经网络将知识存储于连接权值中,可以实现各种非线性映射。

3.鲁棒性和容错性

神经网络具有信息存储的分布性,故局部的损害会使人工神经网络的运行适度减弱,但不会产生灾难性的错误。

4.计算的并行性与存储的分布性

您好,由神经元特性,神经网络结构,学习和训练三大要素决定的,神经网络具有天然的并行性,这是由其结构特征决定的。每个神经元都可以根据接收到的信息进行独立运算和处理,并输出结果。同一层中的不同神经元可以同时进行运算,然后传输到下一层进行处理。因此,神经网络旺旺能够发挥并行计算的优势,大大提升运行速度。
希望可以帮助到您哦亲。【回答】
谢谢【提问】

神经网络的功能特点是由什么决定的

6. 神经网络到底能干什么?

神经网络利用现有的数据找出输入与输出之间得权值关系(近似),然后利用这样的权值关系进行仿真,例如输入一组数据仿真出输出结果,当然你的输入要和训练时采用的数据集在一个范畴之内。例如预报天气:温度 湿度 气压等作为输入  天气情况作为输出利用历史得输入输出关系训练出神经网络,然后利用这样的神经网络输入今天的温度 湿度 气压等 得出即将得天气情况当然这样的例子不够精确,但是神经网络得典型应用了。希望采纳!

7. 什么是神经网络

神经网络可以指向两种,一个是生物神经网络,一个是人工神经网络。
生物神经网络:一般指生物的大脑神经元,细胞,触点等组成的网络,用于产生生物的意识,帮助生物进行思考和行动。
人工神经网络(Artificial Neural Networks,简写为ANNs)也简称为神经网络(NNs)或称作连接模型(Connection Model),它是一种模仿动物神经网络行为特征,进行分布式并行信息处理的算法数学模型。这种网络依靠系统的复杂程度,通过调整内部大量节点之间相互连接的关系,从而达到处理信息的目的。
人工神经网络:是一种应用类似于大脑神经突触联接的结构进行信息处理的数学模型。在工程与学术界也常直接简称为“神经网络”或类神经网络。

什么是神经网络

8. 什么是神经网络,举例说明神经网络的应用

我想这可能是你想要的神经网络吧!

什么是神经网络:
人工神经网络(Artificial Neural Networks,简写为ANNs)也简称为神经网络(NNs)或称作连接模型(Connection Model),它是一种模仿动物神经网络行为特征,进行分布式并行信息处理的算法数学模型。这种网络依靠系统的复杂程度,通过调整内部大量节点之间相互连接的关系,从而达到处理信息的目的。


神经网络的应用:

应用
在网络模型与算法研究的基础上,利用人工神经网络组成实际的应用系统,例如,完成某种信号处理或模式识别的功能、构作专家系统、制成机器人、复杂系统控制等等。
纵观当代新兴科学技术的发展历史,人类在征服宇宙空间、基本粒子,生命起源等科学技术领域的进程中历经了崎岖不平的道路。我们也会看到,探索人脑功能和神经网络的研究将伴随着重重困难的克服而日新月异。


神经网络的研究内容相当广泛,反映了多学科交叉技术领域的特点。主要的研究工作集中在以下几个方面:
生物原型
从生理学、心理学、解剖学、脑科学、病理学等方面研究神经细胞、神经网络、神经系统的生物原型结构及其功能机理。
建立模型
根据生物原型的研究,建立神经元、神经网络的理论模型。其中包括概念模型、知识模型、物理化学模型、数学模型等。
算法
在理论模型研究的基础上构作具体的神经网络模型,以实现计算机模拟或准备制作硬件,包括网络学习算法的研究。这方面的工作也称为技术模型研究。
神经网络用到的算法就是向量乘法,并且广泛采用符号函数及其各种逼近。并行、容错、可以硬件实现以及自我学习特性,是神经网络的几个基本优点,也是神经网络计算方法与传统方法的区别所在。